\begin{tabular}{|c|c|c|c|c|c|}
\hline Strand \& Representations and Symbols \& Written \& Mental Methods for Calculations \& Order of Calculation \& Rounding \& Problem Solving \\
\hline \multirow[t]{2}{*}{Foundation Stage} \& \& *using quantities and objects, add and subtract two single-digit numbers and count on or back to find the answer \& \& \& *solve problems including doubling \\

\hline \& \begin{tabular}{l}
and subtraction to taking objects a \\
(Addition) Run alongside activities

$$
+O Q=
$$

$$
=
$$ \\

Make a record in pictures, words o Model using number sentences alo

$$
5+1=6 \quad 7-3=4
$$ \\

Children need to understand the c answer'.

$$
10=5+5 \quad 3=3
$$ \\

Progress to using a number line to

$$
5+3=8
$$ \\

Use games, songs and practical act Mental strategies \\
Number doubles of single digits One more and one less than a give Resources \\
Numbers and Patterns \\
Numicon (Firm Foundations Kit)

 \&

two groups of objects \\
from a group. \\
gig the Numicon shapes to build con \\
mbols of calculation activities carrie side practical activities. \\
ept of equality before using the ' $=$ ' s \\
p forwards and back in steps of one

$$
8-3=5
$$ \\

es to begin using vocabulary. \\
umber up to 20

 \&

erstanding. \\
tions should be writte
\end{tabular} \& uality sign \& is not just interpreted as 'the \\

\hline
\end{tabular}

Mathematics programmes of study: Key stages 1 and 2; September 2015

Mathematics programmes of study: Key stages 1 and 2; September 2015

Mathematics programmes of study: Key stages 1 and 2; September 2015

Mathematics programmes of study: Key stages 1 and 2; September 2015

Year Six	*use their knowledge of the order of operations to carry out calculations involving the four operations *solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why *solve problems involving addition, subtraction, multiplication and division *use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
	Extend to numbers with any number of digits and decimals with 1, 2 and/or 3 decimal places. $13.86+9.481=23.341$ $\begin{array}{r} 13.86 \\ +\quad 9.481 \\ \hline 23.341 \\ \hline 111 \end{array}$ Continued use of inverse and estimation strategies for checking including rounding for decimals. To use a systematic approach when solving calculations e.g. $36-\square=5 \times 6$ $36-\square=30$ To be able to determine which is the most efficient method to use and manipulate the numbers to best suit the method. When there are no brackets in an expression, do multiplication or division before addition or subtraction, e.g. $4+3 \times 7=4+21=25$. When there are brackets in an expression, do the operation inside the brackets first, e.g. $(4+3) \times 7=7 \times 7=49$. These rules are called the order of operations. Additional User Example An old method of remembering this is by using the BODMAS rule: $B=$ Brackets first $\mathrm{O}=$ Order or powers (Order means anything raised to the power of a number) D = Division $M=$ Multiplication A = Addition $S=$ Subtraction Your scientific calculator will default to this order unless you put in brackets to get it to do a different order. An arithmetic calculator will not do the operations in the correct order, unless you put the operations into the arithmetic calculator in the correct order and press equals inbetween each operation

Mathematics programmes of study: Key stages 1 and 2; September 2015

